Equable Right Triangular Prism

EQUABLE RIGHT TRIANGULAR PRISM

Balmoral Software

Solutions: 94

There are exactly 94 equable right prisms with an integer height and a base that is a Heronian triangle (HT).

Proof. The analysis of equable triangles produced the following list of 94 equable HT prisms with integer heights, ordered by volume:

abchV=SPAtDescription
121010628832481.5000Acute Isosceles
131310530036601.6667Acute Isosceles
15129632436541.5000Right
151413433642842.0000Acute
17158636040601.5000Right
161010838436481.3333Isosceles
201612438448962.0000Right
201311639644661.5000
2415154432541082.0000Isosceles
251712545054901.6667
2624104480601202.0000Right
25247650456841.5000Right
3025114528661322.0000
30268657664961.5000
2420203576641923.0000Acute Isosceles
3420184576721442.0000
2625173612682043.0000Acute
3726154624781562.0000
2825173630702103.0000Acute
2921203630702103.0000Right
3024183648722163.0000Right
4030144672841682.0000
3935104672841682.0000
3720196684761141.5000
2413131272050601.2000Isosceles
3925166720801201.5000
3430163720802403.0000Right
414094720901802.0000Right
4128156756841261.5000
3534153756842523.0000Acute
4026223792882643.0000
3936153810902703.0000Right
51401369361041561.5000
58501249601202402.0000
51302739721083243.0000
52332539901103303.0000
533524310081123363.0000
504814310081123363.0000Right
653433410561322642.0000
604521311341263783.0000
52506811521081441.3333
605216311521283843.0000
3529814117672841.1667
655512611881321981.5000
745125412001503002.0000
655120312241364083.0000
68657612601402101.5000
656114312601404203.0000
3029518129664721.1250
78759412961623242.0000
744038313681524563.0000
736019313681524563.0000
754435313861544623.0000
785032314401604803.0000
825630315121685043.0000
856029315661745223.0000
979011415841983962.0000
877518316201805403.0000
896528316381825463.0000
858413316381825463.0000Right
1048521416802104202.0000
80739817281622161.3333
525151417641081261.1667
1061028518002163601.6667
1028026318722086243.0000
10910011619802203301.5000
1139225320702306903.0000
11610517321422387143.0000
12512213323402607803.0000
13011024323762647923.0000
13613014325202808403.0000
1457473326282928763.0000
17015319427363426842.0000
15914023328983229663.0000
16411155329703309903.0000
195148493352839211763.0000
12312251236002503001.2000
205195163374441612483.0000
218200223396044013203.0000
229185463414046013803.0000
305289184489661212242.0000
17416971250403504201.2000
300259433541860218063.0000
2982966758806008401.4000
397380213718279823943.0000
409370413738082024603.0000
44944297882090012601.4000
5194814039360104031203.0000
74070339313338148244463.0000
4854816202160097210801.1111
1405136938325308281284363.0000
1213121251132670243029701.2222
1700169571145738340241581.2222
8669866561936822017340193801.1176
Six of these prisms have isosceles bases. Twelve have bases that are right triangles, seven have bases that are acute, and the remainder have bases that are obtuse. These 94 prisms are surprisingly close in quantity to the 92 equable quadrilateral prisms with integer heights.


Top Page

Home

Copyright © 2019 Balmoral Software (http://www.balmoralsoftware.com). All rights reserved.